contact
Test Drive Blog
twitter
rss feed
blog entries
log in

Jumat, 30 April 2010


FULL ADDER

Full adder adalah penjumlahan penuh dimana 3 buah input ( A B C )atau lebih dengan 2 buah output, dimana Sum ( S ) dan Carry ( Cn ). Full adder biasanya dapat menjumlahkan banyak bilangan biner dimana 8, 16, 32, dan jumlah bit biner lainnya. Pada Sum digunakan gerbang logika Ex-OR dan pada carry digunakan gerbang logika AND dan menggunakan gerbang logika OR untuk menjumlahkan tiap-tiap carry.

5A. Tabel Kebanaran

C

B

A

S

C

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1






5B. Gambar Rangkaian











Dari tabel dapat disimpulkan bahwa percobaan yang Dilakukan adalah benar, karena hasil keluaran Sum dan Carry telah sesuai teori. Untuk output Sum, akan bernilai 0 jika salah satu atau ketiga-tiganya dari input bernilai 0, dan akan bernilai 1 jika salah sati atau ketiga-tiganya dari input bernilai 1. Sedangkan untuk output Carry, akan bernilai 0 jika ketiga-tiganya dari input bernilai 0 atau jika salah satu input bernilai 1, dan akan bernilai 1 jika ketiga-tiganya dari input bernilai 1 atau salah satu dari input bernilai 0.

0
Senin, 19 April 2010

Tugas 4.A

Hukum Aljabar Boolean & Tabel Kebenarannya

T1. Hukum Komutatif


(a) A + B = B + A


A

B

A+B

B+A

0

0

0

0

0

1

1

1

1

0

1

1

1

1

1

1


(b) A B = B A


A

B

A B

B A

0

0

0

0

0

1

0

0

1

0

0

0

1

1

1

1


T2. Hukum Asosiatif


(a) (A + B) + C = A + (B + C)



A

B

C

A+B

(A+B)+C

B+C

A+(B+C)

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1


(b) (A B) C = A (B C)


A

B

C

A B

(A B) C

B C

A (B C)

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

1

0

1

0

1

0

0

0

0

1

1

1

1

1

1

1


T3. Hukum Distributif


(a) A (B + C) = A B + A


A

B

C

B+C

A(B+C)

A B

AB+A

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

1

0

0

0

0

1

1

1

0

0

0

1

0

1

1

1

0

1

1

1

1

1

1

1

1


(b) A + (B C) = (A + B) (A + C)


A

B

C

B C

A+(BC)

A+B

A+C

(A+B)(A+C)

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1


T4. Hukum Identity


(a) A + A = A


A

A+A

0

0

1

1


(b) A A = A


A

AA

0

0

1

1


T5.


(a) AB + AB’ = A


A

B

B’

A B

A B’

AB+AB’

0

0

1

0

0

0

0

1

0

0

0

0

1

0

1

0

1

1

1

1

0

1

0

1


(b) (A+B) (A+B’) = A


A

B

B’

A+B

A+B’

(A+B)(A+B’)

0

0

1

0

1

0

0

1

0

1

0

0

1

0

1

1

1

1

1

1

0

1

1

1


T6. Hukum Redudansi


(a) A + A B = A


A

B

A B

A+AB

0

0

0

0

0

1

0

0

1

0

0

1

1

1

1

1


(b) A (A + B) = A


A

B

A+B

A(A+B)

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1


T7.


(a) 0 + A = A


A


0+A

0

0

0

1

0

1


(b) 0 A = 0


A


0 A

0

0

0

1

0

0


T8.


(a) 1 + A = 1


A


1+A

0

1

1

1

1

1


(b) 1 A = A


A


1 A

0

1

0

1

1

1


T9.


(a) A’ + A = 1


A

A’

A’+A

0

1

1

1

0

1


(b) A’ A = 0


A

A’

A’ A

0

1

0

1

0

0


T10.


(a) A + A’ B = A + B


A

B

A’

A’ B

A+A’B

A+B

0

0

1

0

0

0

0

1

1

1

1

1

1

0

0

0

1

1

1

1

0

0

1

1


(b) A ( A’ + B) = A B


A

B

A’

A’+B

A(A’+B)

AB

0

0

1

1

0

0

0

1

1

1

0

0

1

0

0

0

0

0

1

1

0

1

1

1


T11. Theorema De Morgan's


(a) ( A + B)’ = A’ B’


A

B

A’

B’

(A+B)’

A’B’

0

0

1

1

1

1

0

1

1

0

0

0

1

0

0

1

0

0

1

1

0

0

0

0


(b) ( A B )’ = A’ + B’


A

B

A’

B’

(A B)’

A’+B’

0

0

1

1

1

1

0

1

1

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0



Tugas 4.B

1. Give the relationship that represents the dual of the Boolean property A + 1 = 1?
(Note: * = AND, + = OR and ' = NOT)

1. A * 1 = 1

2. A * 0 = 0 ( Jawabannya )

3. A + 0 = 0

4. A * A = A

5. A * 1 = 1

2. Give the best definition of a literal?

1. A Boolean variable

2. The complement of a Boolean variable ( Jawabannya )

3. 1 or 2

4. A Boolean variable interpreted literally

5. The actual understanding of a Boolean variable

3. Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.

1. A + B + C ( Jawabannya )

2. D + E

3. A'B'C'

4. D'E'

5. None of the above

4. Which of the following relationships represents the dual of the Boolean property x + x'y = x + y?

1. x'(x + y') = x'y' ( Jawabannya )

2. x(x'y) = xy

3. x*x' + y = xy

4. x'(xy') = x'y'

5. x(x' + y) = xy

5. Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:

1. Z + YZ

2. Z + XYZ ( Jawabannya )

3. XZ

4. X + YZ

5. None of the above

6. Which of the following Boolean functions is algebraically complete?

1. F = xy ( Jawabannya )

2. F = x + y

3. F = x'

4. F = xy + yz

5. F = x + y'

7. Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?

1. A + B

2. A'B' ( Jawabannya )

3. C + D + E

4. C'D'E'

5. A'B'C'D'E'

8. Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?

1. F'= A+B+C+D+E

2. F'= ABCDE

3. F'= AB(C+D+E)

4. F'= AB+C'+D'+E'

5. F'= (A+B)CDE ( Jawabannya )

9. An equivalent representation for the Boolean expression A' + 1 is

1. A

2. A'

3. 1 ( Jawabannya )

4. 0

10. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?

1. ABCDEF

2. AB ( Jawabannya )

3. AB + CD + EF

4. A + B + C + D + E + F

5. A + B(C+D(E+F))

0

Laman

[Teknologi Informasi]

About Me

Foto saya
solok, Padang/Sumatera Barat, Indonesia
the interisti

Daftar Blog Saya

Cari Blog Ini

Followers